Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion.
نویسندگان
چکیده
Dopamine signaling is mediated by five cloned receptors, grouped into D1-like (D1 and D5) and D2-like (D2, D3 and D4) families. We identified by reverse transcription-PCR the presence of dopamine receptors from both families in INS-1E insulin-secreting cells as well as in rodent and human isolated islets. D2 receptor expression was confirmed by immunodetection revealing localization on insulin secretory granules of INS-1E and primary rodent and human beta cells. We then tested potential effects mediated by the identified receptors on beta cell function. Dopamine (10 microM) and the D2-like receptor agonist quinpirole (5 microM) inhibited glucose-stimulated insulin secretion tested in several models, i.e. INS-1E beta cells, fluorescence-activated cell-sorted primary rat beta cells, and pancreatic islets of rat, mouse, and human origin. Insulin exocytosis is controlled by metabolism coupled to cytosolic calcium changes. Measurements of glucose-induced mitochondrial hyperpolarization and ATP generation showed that dopamine and D2-like agonists did not inhibit glucose metabolism. On the other hand, dopamine decreased cell membrane depolarization as well as cytosolic calcium increases evoked by glucose stimulation in INS-1E beta cells. These results show for the first time that dopamine receptors are expressed in pancreatic beta cells. Dopamine inhibited glucose-stimulated insulin secretion, an effect that could be ascribed to D2-like receptors. Regarding the molecular mechanisms implicated in dopamine-mediated inhibition of insulin release, our results point to distal steps in metabolism-secretion coupling. Thus, the role played by dopamine in glucose homeostasis might involve dopamine receptors, expressed in pancreatic beta cells, modulating insulin release.
منابع مشابه
The effect of ghrelin on Kiss-1 and KissR gene transcription and insulin secretion in rat islets of Langerhans and CRI-D2 cell line
Objective(s): Ghrelin is a peptide hormone that has been shown to have numerous central and peripheral effects. The central effects including GH secretion, food intake, and energy homeostasis are partly mediated by Kiss1- KissR signaling pathway. Ghrelin and its receptor are also expressed in the pancreatic islets. Ghrelin is one of the key metabolic factors controlling insulin secretion from t...
متن کاملThe Effect of Inhibition of Dopamine D2 Receptors on Some of the Peripheral Blood Mononuclear Cells of the Rat under Food restriction
Background & Objective: In previous studies, the effects of food restriction on the changes in immune responses and brain dopamine content have been determined. On the other hand, it has been shown that immune cells, in addition to dopamine production, also have dopamine receptors. The purpose of this study was to evaluate the effect of inhibition of D2 dopamine receptors on several functions o...
متن کاملThe role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells
Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...
متن کاملDifferentiation of Mesenchymal Stem Cell toward the Insulin-like Cells with Lentivirus Vector Mir-375
Background & Objective: Type1 diabetes is characterized by autoimmune destruction of pancreatic β cells, leading to reduced insulin secretion. Differentiation of mesenchymal stem cells (MSCs) into β-like cells offers new ways of diabetes treatment. MSCs can be insulated from the human umbilical cord tissue and differentiate into insulin-producing cells. Material & Methods: Human um...
متن کاملتاثیر عصاره هیدروالکلی کاکوتی کوهی (Ziziphora clinopodioides Lam) بر تعداد سلولهای فعال بتای پانکراس در موشهای سوری دیابتی نوع یک ناشی از استرپتوزوتوسین
Background: Diabetes is a metabolic disorder caused by insufficient production of insulin or insulin receptors deficiency. It is now the major cause of morbidity and hospitalization in patients with a significant financial burden to the society. The aim of this study was to evaluate the effect of Ziziphora ethanolic extract on active pancreatic beta cells on streptozotocin induced diabetic mice...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 44 شماره
صفحات -
تاریخ انتشار 2005